
When we write our JavaScript program, usually define some variables and

functions. How interpreter found them when executing the program? What

happened behind them when we referenced these variables? In this article,

let’s exploring execution context defined in ECMA-262-3 standard, related

mechanism will also be discussed.

*other versions: English-Blog, English-PDF, Chinese-Blog, Chinese-PDF

Definition

When control is transferred to ECMAScript executable code, control is entering

an execution context. It is possible to enter a new execution context from current

execution context, these contexts logically form a stack.

Execution context is created dynamically when program is running. For instance,

function creates a new execution context when it is invoked. Repeatedly invoking

functions (including recursion) will repeatedly create new execution contexts. Logical

stack changing on program running when new function invoked, function returned,

unhandled exception thrown, etc. Top of this logical stack always be the current running

execution context, bottom is the global context.

EC logical stack in running program

Types of Executable Code

Depending on different types of executable code, execution context may be different. At

first, let’s understand three types of executable code.

a). Global Code

Global code is any source code text except code parsed as part of function body.

var i = 0; // global code

function foo() { // definition part of foo is also global code

http://bosnspace.wordpress.com/2012/08/07/jsindeep1-exploring-execution-context-in-ecma-262-3/
http://bosnspace.files.wordpress.com/2012/08/jsindeep1_exploring_execution_context_es32.pdf
http://www.cnblogs.com/bosnma/archive/2012/08/01/jsindeep_1_exploring_execution_context_in_es3.html
http://wenku.baidu.com/view/2ffc0d45a8956bec0975e309.html

var j = 1; // function body of foo is function code

}

var k = 2; // global code

Before any program code execution, global execution context is initialized, structure of

the logical stack (LS) looks like:

[Pseudo code]

LS = {

 globalContext

}

b). Function Code

Function code is source code text that parsed as function body, but not includes code in

nested inner function bodies.

var i = 0; // global code

function foo() { // global code

var j = 0; // function code of foo

function inner() { // function code of foo

var k = 0; // function code of inner

}

if (i++ == 0) foo(); // function code of foo

}

foo();

[Pseudo code]

LS = {// foo invoked at 1st time

 <foo>functionContext, // current activated execution context

 globalContext

}

LS = {// foo invoked at 2nd time

<foo>functionContextRecursively // current activated execution context

<foo>functionContext, // waiting <foo>…Recursively

// returned, than activated

globalContext

}

c). Eval Code

When invoking built-in eval function and its parameter is string (not function object),

code in this string called “Eval Code”.

eval(“function foo2() {/* doSth(); */}”); // eval code in string double quoted

eval(function foo3() {/* function code */});

*Definition in ECMA262-3 doc will be more rigorous, this article may compromise between easily

understanding and rigorous definitions.

For eval code, execution context varies depend on calling context. For example, if

function eval invoked in global context, the calling context is global context; if invoked in

function context, the calling context is this function context.

eval(‘var x = 10’); // affect globalContext

(function foo() {

 eval(‘var y = 20’); // affect <foo>functionContext,

}());

alert(x); // 10

alert(y); // runtime error，y is not defined

[Pseudo code]

LS = { // invoke eval('var x = 10');

evalCallingContext : globalContext,

 globalContext

}

LS = { // eval('var x = 10'); ended

 globalContext // evalCallingContext pop up

}

LS = { // invoke foo, <foo>functionContext

// pushed

 evalCallingContext : <foo>funcitonContext, // invoke eval('var y = 20');

// evalCallingContext pushed

 globalContext

}

Variable Instantiation

Every execution context has its own variable object（VO），in the initialization

stage, defined variables and functions will be added to variable object as properties.

For function code, formal parameters also be added to variable object.

*In ECMA-262-5, terminology “variable object” will be replaced by new “lexical environment”

which we’ll discuss in next chapter.

For more details, variable object initialized as steps below in order:

a). Parameter Process

For function code, every parameter passed in will be added to variable object as

a property whose name is the identifier of the function, value supplied by caller.

If parameters are defined but not passed in, new property of variable object still

be created, but the value is undefined.

function foo(x, y, z) {

}

[Pseudo code]

VO(<foo>functionContext) = {

foo(1, 2); x : 1,

y : 2,

z : undefined

}

b). Function Definition Process

For every function definition (not function expression) creating new property of

variable object whose name is identifier, value is this function object.

function foo(x, y, z) {

function f() {

}

}

foo(1, 2);

[Pseudo code]

VO(<foo>functionContext) = {

x : 1,

y : 2,

z : undefined,

f : <ref to function f object>

}

c). Variable Definition Process

For every variable definition, creating new property of variable object whose name

is identifier of variable, value is undefined. Caution please, assignment operation

is not handled in this stage, for instance, “var i = 0;” is separated into two

parts: definition and assignment. Variable object initialization only process

variable definition, assignment statement“i = 0” executed in next stage.

d). Resolving Naming conflicts

Conflicts in parameter process：

If the parameter identifier conflicted, its value is decided by the last one.

e.g.：!function(x, y, y){alert(y);}(i1, 2, 3) // alert 3

If second y is not passed in, the value of y supplied by the last y parameter,

namely undefined.

e.g.：!function(x, y, y){alert(y);}(1, 2) // alert undefined

*on the left of function, “!” used for making function as expression instead of function

definition. Similar to (function(){}()), but shorter.

Conflicts in function definition process：

If function identifier existed in variable object, replace it.

e.g.：!function(x) {function x() {};alert(x);}(1) // alert function

Conflicts in variable definition process：

If variable identifier existed in variable object, ignore it.

e.g.：!function(x) {function x() {};var x; alert(x);}(1) // still alert function

Pay attention again that variable object initialization not handles variable

assignment statement. We’ll introduce what happened after execution context

initialization later.

e.g.：!function(x) {function x() {};var x = 1; alert(x);}(1) // alert 1

Scope Chain

Not only variable object but also scope chain and this binding are initialized

in execution context initialization stage. Scope chain is a list of objects, used

for identifier lookup. When execution context finished initialization,

only with statement and try clause can change scope chain in runtime.

 [Pseudo code]

activeExecutionContext = {

 VO : { },

 scopeChains : [VO_1, VO_2, …, VO_n]

 this : thisValue

}

For global context, only global object is placed into scope chain.

For function context, scope chain looks like a list consist of variable

objects in every execution context of logical stack. Scope chain will be

used for variable search, in logical stack, from top to bottom.

Global Object

Before entering any execution context or any program code execution,

a global and unique global object is created, built-in properties and

functions are added such as: Math, String, Date, parseInt, etc. Properties

defined by host are also added to global context, for instance, HTML

document object model, a property “window” will be added. The value is

just the global object itself.

Global object is inner object in mechanism, cannot be directly

manipulated by program code, as there’s a reference “window” in HTML

DOM, we can indirectly interact with global object.

[Pseudo code]

globalObject = {

 Math : {…},

 String : {…},

 parseInt : <function>,

 …

 window : globalObject

}

Activation Object

For function context, an activation object is created before

variable object initialization. This activation object will be

initialized with property arguments, than this activation object used

as variable object and go on entering variable instantiation stage.

Example

First step: entering an execution context, execution context

initialized with 1).variable object, 2).scope chain, 3).this binding.

Second step: executing code and interacting with execution context.

function test(a, b) {

var c = 10;

function d() {}

var e = function _e() {};

(function x() {});

b = 20;

}

test(10);

[Pseudo code] – <test>scopeChain

ScopeChain(<test>functionContext) = {

VO(<test>functionContext),

globalObject

}

[Pseudo code] – VO initialize

VO(<test>functionContext) = {

a : 10,

b : undefined,

d : <ref to function d object>,

c : undefined,

e : undefined

}

[Pseudo code] – VO changing

VO(<test>functionContext) = {

a : 10,

b : 20,

d : <ref to function d object>,

c : 10,

e : <ref to function _e object>

}

Conclusion

Execution context defined in ECMA-262-3 varies on three types of

executable code:

1. For global context, initialize global object, than this object is used

as variable object for variable instantiation.

2. For function context, initialize activation object, than this object

is used as variable object for variable instantiation.

3. For eval context, depending on the calling context:

a) If eval is invoked in global context, eval code interacting with

global context in initialization and execution.

b) If eval is invoked in function context, eval code interacting with

this function context in initialization and execution.

In next chapter<<JSinDeep2: Exploring Execution Context in ECMA-262-5>>,

we’ll discuss lexical environment. Compared with ES3, there are

differences on performance, object model, ways processing with statement

and try clause, etc.

About

Author：Bosn Ma

Intro： I am Peking based web developer, interested in JavaScript, J2EE and MySQL.

Currently I am working at Taobao as Senior Web R&D Engineering

E-mail: bosn@outlook.com

GitHub：https://github.com/bosnma/JsInDeep

Reference

ECMA262-3 Doc

http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%2

03rd%20edition,%20December%201999.pdf

<<ECMA-262-3 in detail. Chapter 1. Execution Contexts>>

http://dmitrysoshnikov.com/ecmascript/chapter-1-execution-contexts/

<<ECMA-262-3 in detail. Chapter 2. Variable object>>

http://dmitrysoshnikov.com/ecmascript/chapter-2-variable-object/

https://twitter.com/bosnma
mailto:bosn@outlook.com
https://github.com/bosnma/JsInDeep
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf
http://dmitrysoshnikov.com/ecmascript/chapter-1-execution-contexts/
http://dmitrysoshnikov.com/ecmascript/chapter-2-variable-object/

